Multiple positive solutions of singular discrete p-Laplacian problems via variational methods

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MULTIPLE POSITIVE SOLUTIONS OF SINGULAR DISCRETE p-LAPLACIAN PROBLEMS VIA VARIATIONAL METHODS

We obtain multiple positive solutions of singular discrete p-Laplacian problems using variational methods.

متن کامل

MULTIPLE POSITIVE SOLUTIONS OF SINGULAR p-LAPLACIAN PROBLEMS BY VARIATIONAL METHODS

The semilinear case p = 2 with γ < 1 and f = 0 has been studied extensively in both bounded and unbounded domains (see [5, 6, 7, 10, 11, 12, 14, 20] and their references). In particular, Lair and Shaker [11] showed the existence of a unique (weak) solution when Ω is bounded and a ∈ L2(Ω). Their result was extended to the sublinear case f (t) = tβ, 0 < β ≤ 1 by Shi and Yao [15] and Wiegner [18]....

متن کامل

Positive Solutions of Singular Dirichlet Problems via Variational Methods

In this paper, we establish the existence results for second order singular Dirichlet problems via variational methods. Some recent results are extended and improved. Examples are also given to illustrate the new results.

متن کامل

Existence of Positive Solutions for Singular P-laplacian Sturm-liouville Boundary Value Problems

We prove the existence of positive solutions of the Sturm-Liouville boundary value problem −(r(t)φ(u′))′ = λg(t)f(t, u), t ∈ (0, 1), au(0)− bφ−1(r(0))u′(0) = 0, cu(1) + dφ−1(r(1))u′(1) = 0, where φ(u′) = |u′|p−2u′, p > 1, f : (0, 1) × (0,∞) → R satisfies a p-sublinear condition and is allowed to be singular at u = 0 with semipositone structure. Our results extend previously known results in the...

متن کامل

Positive Solutions of Three-point Boundary-value Problems for P-laplacian Singular Differential Equations

In this paper we prove the existence of positive solutions for the three-point singular boundary-value problem −[φp(u)] = q(t)f(t, u(t)), 0 < t < 1 subject to u(0)− g(u′(0)) = 0, u(1)− βu(η) = 0 or to u(0)− αu(η) = 0, u(1) + g(u′(1)) = 0, where φp is the p-Laplacian operator, 0 < η < 1; 0 < α, β < 1 are fixed points and g is a monotone continuous function defined on the real line R with g(0) = ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Difference Equations

سال: 2005

ISSN: 1687-1847

DOI: 10.1155/ade.2005.93